Intelligent Systems & Control Semester 1 ELE8066
Intelligent Systems & Control Semester
Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: THEend8_
ELE8066 Semester 1 Coursework
Intelligent Systems & Control Semester 1 ELE8066
Instructions
-Preparing a report in Latex is preferable, alternatively prepare in MS Word.
-There is a strict 10-page limit, excluding the first title page. Any material after 10 pages will not be graded.
-Use sections and subsections that match to each question.
-Provide short and precise comments/observations when required.
-The report should be a single pdf file.
-The simulink and m-files should also be uploaded in a single .zip file. In these files, use commenting to explain
what you are doing.
-You can use Matlab special functions to answer questions.
-In summary, additionally to the report itself containing any derivations/calculations, you must upload a copy of
any m-files used.
-When running the m-files, generate annotated (i.e. labels on all variables, etc.) plots for the various responses
(when comparing different responses, they should be plotted in the same figure.).
-The report will be uploaded in Canvas. The deadline for uploading your report is mentioned clearly in the
Assignments section in Canvas.
ELE8066 Semester 1 Coursework
Control of a DC-DC Buck-Boost Converter
Digital power converters are used in billions in household electronics, but also in electricity (micro)-grids.
The principle of DC-DC converters is simple; switching is enabled by transistors, regulating the output
voltage to a constant value that can be larger or smaller than the input voltage, depending on its value and
the topology of the circuit. In this assignment, we will study the DC-DC buck-boost converter, which allows
the output voltage to be either higher or lower than the input voltage.
The schematics of the converter are below. We model each transistor pair as an ideal two-position switch.
The resistor RL accounts for the losses in the power stage. The current source Iload corresponds to the current
drawn from the load connected to the output of the power converter.